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Technology Relevance: SMAP


SMAP Primary Science Objectives: 
n  Global high-resolution mapping of soil 

moisture and its freeze-thaw state to: 
  Link terrestrial water, energy, and carbon cycle 

processes 
  Estimate global water and energy fluxes at the 

land surface 
  Quantify net carbon flux in boreal landscapes 
  Extend weather and climate forecast skill 
  Develop improved flood and drought prediction 

capability 

Development Status: 

n  Entered Phase B in January 2010 
n  Science Definition Team (SDT) selected in 

2008 
n  Algorithms and Cal/Val workshop held in 

June 2009 and March 2010; Applications 
workshop September 2009 

n  Now completing mission trade studies 

Mission Approach: 
n  GSFC L-band radiometer 
n  JPL L-band radar 
n  Common 6m rotating 

antenna for 3-day global 
repeat coverage 

n  Merged radar and 
radiometer data for high-
accuracy, mid-resolution, 
soil moisture 

n  670 km polar sun-sync 

Development Objectives: 

n  Just completed KDP-B; now in Phase B 
n  Phase B will focus on further trade studies, 

risk reduction, requirements and interface 
maturation  

n  2nd Algorithms Workshop March 2010 
n  Cal/Val Field Campaigns Summer 2010 

(Oklahoma, Canada, Australia) 
n  Launch planned for late 2014 
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Technology Background


 Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE): develop 
technologies for near real-time validation of spaceborne soil moisture estimates 

The Challenge for SMAP Validation: 

n  SMAP’s radar and radiometer will measure soil 
moisture with different spatial resolutions 

n  Soil moisture varies on multiple spatial scales 
   O(10 m) due to vegetation cover and topography 
   O(100 m) due to topography and soil type 
   O(1000m) due to cloud cover and precipitation 

n  Deploying validation sensors at all scales and with 
high density is infeasible 
  Old paradigm doesn’t work 

n  Need smart and adaptive time and space 
sampling 
  Balance cost and accuracy 

n  This problem is at the boundary of the 
conventional instrument domain and information 
technologies domain 
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Objectives


1. Optimal design of sensor node placement and scheduling controller 
based on modeled and measured soil moisture spatial and temporal 
statistics 

SoilSCAPE Objectives are: 

2. Derivation of large-scale remote sensing estimates of heterogeneous 
soil moisture, compatible with ground sensor network estimates of true 
mean of soil moisture field via a landscape simulator 

3. Design and implementation of large-scale wireless communication  & 
actuation system to configure sampling within the in-situ sensor network 
and to produce estimates of the soil moisture field mean 
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Control System overview: 

Liu//Nayyar/Shuman/Teneketzis/Wu 
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n  Design of sensor node placement and 
scheduling based on soil moisture 
spatial and temporal statistics 
   Implemented through a “centralized control” 

architecture

   Initially will decouple sensor placement 

solution from sensor scheduling solution
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Control System overview: 

Liu//Nayyar/Shuman/Teneketzis/Wu 

•   Sensor placement assuming continuous-time sampling 
•   Conducted studies on simulated data 
•   Developed a cluster-based placement scheme 

•   Field mean estimation problem assuming a fixed placement  
•   With a fixed placement, computed scheduling policies for sensors 
•   Modified the estimation policy to estimate the mean value of soil moisture over 

the field of interest 

•   Methodology to address the joint placement and scheduling problem  
•   Had previously developed scheduling controller independent of placement 
•   Placement and scheduling problem are inter-related 
•   Optimal placements should take into account the dynamic scheduling costs 
•   Identified a methodology that incorporates the dynamic aspects of scheduling 

into the static placement problem  
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Sensor placement algorithms using simulated data   

•   tRIBS (TIN-based real-time integrated basin simulator; TIN: triangulated irregular 
network) is a landscape hydrology simulation tool developed at MIT; 
has been used here to investigate space/time soil moisture dynamics 

•   Assuming perfect measurements in time, address sensor placement 
as a stand-alone problem 

•   Exploit special properties of data 

•   Investigate a cluster-based placement scheme to better exploit the 
data features 

•   Experimental results 

Liu 
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The stand-alone sensor placement problem 

•   A field with N possible locations to place sensors 
•   Signal to be sensed assumed to be a random process; random variable      at 

location  
•   If we place a sensor at     we observe perfectly     ; otherwise we need to 

provide an estimate 

•   Want to select K locations to place sensors 

Liu 

•   err() is some error measure; most commonly used is the MSE 

•   This is a joint optimization: simultaneously determine the best subset and the 
best estimate 

•   Can limit the solution space, e.g., only consider linear estimates  

€ 

(P)       A* =
A⊂V ,|A |=K

argmin  E[err(XV ,  XV

^
)]

€ 

E[err(XV ,XV

^
)] =|| XV − XV

^
||2
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One very commonly used approach 

•   Assume the underlying spatial random process is Gaussian  
•   The best estimate for an unobserved location is the conditional mean of a 

Gaussian random variable, a linear estimator 

•   Can use metrics like entropy and mutual information as alternative 
objective functions (though an approximate one to MSE) for subset 
selection 

Liu 

•   They remain NP-hard 
•   Simple greedy algorithms shown to have good performance € 

(MaxEN) 

A* =
A⊂V ,|A |=K

argmin  H(XV \A | XA )

    =
A⊂V ,|A |=K

argmax  H(XA )

€ 

(MaxMI)

A* =
A⊂V ,|A |=K

argmax  MI(XV\ A, XA )

    =
A⊂V ,|A |=K

argmax  H(XV \A ) −H(XV \A | XA )
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How the greedy algorithms work 

•   Use certain training data to compute the mean, variances, and covariances at 
(and among) all locations 

•   Greedy placement: 
•   At each step t, select one location that maximizes EN/MI (or minimizes MSE) given 

the set of locations already selected 
•   Repeat till we have selected K locations 

•   Estimation/Prediction: 
•   Conditional mean, also known as Gaussian regression 

Liu 

•   How well does the Gaussian assumption hold for soil moisture data? 

•   How does this affect the design of good sensor placement and field estimation 
algorithms?  
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 tRIBS simulation of soil moisture fields 

•   A 2km x 2km basin with 2400 
locations (9 depths each) on a 
regular square grid 

•   Over a three-month period 
(simulated time), one snapshot per 
hour, a total of 2208 snapshots used 
in our experiments 

Entekhabi/Liu 
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Properties of the data: is the (surface) soil moisture process Gaussian? 

Liu/Wu 

•   Three randomly selected 
locations 

•   Surface soil moisture 
only 

•   Moisture readings 
amplified 1000x  

•   Top: histograms of 
moisture at these 
locations (black) and the 
estimated Gaussian 
kernel (red) 

•   Bottom: estimated pdf 

•   Observation: these are 
clearly non-Gaussian 
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Temporal changes at these locations 

Liu/Wu 

•   The same three 
locations as in previous 
slide  

•   Figures show the change 
over time at these 
locations 

•   Figures show, 
qualitatively, how soil 
moisture is correlated 
between them 

•   Spikes correspond to 
rain events 
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Observations 

•   Locations with similar features (soil 
type, vegetation cover, etc.) will 
show high correlation 

•   Most of these are relatively stable 
features over time 

•   May expect relative soil moisture 
values to hold steady even as 
absolute values vary over time 

•   Shown in bottom figure: histogram of 
a location’s numerical rank in each 
snapshot 

Liu 
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What does the clustering look like (W=8)  

Liu/Wu 
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Placement using coarse-grained ordering 

•   Use a subset of simulated data for training, compute the mean, variances, and 
covariances at (and among) all locations 

•   Sensor placement:  

•   Solve the placement problem independently for each cluster 

•   Can allocate more sensors to clusters with higher average moisture 
(variance) levels 

•   Place      sensors in cluster i, with   

•   Within each cluster can use any existing scheme (e.g., max EN/MI) 

•   Field estimation:  

•   Will use Gaussian regression 

Liu 

€ 

Ki = K
i=1

W

∑
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Clustered vs. global placement: size of the selected subset 

•   Using the first 1500 snapshots for training and the last 700 for testing (out of 
2208) 

•   Clustered schemes show advantage when placing sensors K>=200 

Liu/Wu 



18 

Clustered vs. global placement: performance improvement 

•   250 sensors are placed 
•   Regardless of training amount, clustering results in better performance  

1500 training snapshots 1000 training snapshots 

Liu/Wu 
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A quick glance at the actual placement (20 sensors) under different 
schemes: Many features are similar between EN and MI approaches 

•   Global MaxEN (blue) 
•   Clustered MaxEN (red) 

•   Global MaxMI (blue) 
•   Clustered MaxMI (red) 

Liu/Wu 
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Non-Gaussian Dynamic Mean Estimation with a Fixed Placement 

•   Currently, the scheduling objective is to estimate 
soil moisture evolution at K fixed lateral 
locations using sensors placed at those 
locations 

•   However, we are also interested in using the K 
sensors to estimate a mean value of the soil 
moisture over the area of interest 

•   Statistics are not Gaussian; estimation costs are 
dynamic 

Liu/Nayyar/Shuman/Teneketzis 



21 

•   Solve the scheduling problem independently for each sensor location 

•   Exploit the correlation among soil moisture values at different locations to find 
local estimates,                  , using past measurements from all locations 
(Joint Estimation) 

•   Find the joint statistics of the field mean M and the local values of soil 
moisture at sensor locations 

•   Use the joint statistical model of the soil moisture at sensor locations and the 
field mean to convert the local estimates to a mean field estimate 

•   Performance of scheduler (dynamic problem) depends on placement (static 
problem), and vice versa 

•   Currently developing solution of joint placement and scheduling problems 

Mean Estimation : Solution Methodology 

Liu/Nayyar/Shuman/Teneketzis 
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Landscape Simulator Overview 

•   Proof-of-concept heterogeneous landscape simulator 
-  Developed architecture of simulator 
-  Implemented unified multi-layered multi-species vegetation model adaptable to 

various land cover types 
-  Created a data base of input files using land cover types of NLCD 2001 

•   Visualization in Google Earth 
-  Layers of information co-registered on whole Earth 

•   Preliminary aggregation studies 
-  Investigated how coarse-resolution remote sensor measurements relate to finer-

resolution measurements 

Burgin/Moghaddam 
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Area around Oklahoma City, OK 

Oklahoma City 

Canton 

Example: Oklahoma locations 

1.  Google Earth 
2.  Land cover type from NLCD 2001 
3.  Digital Elevation Map (DEM) / National Elevation Dataset (NED) 
4.  Soil type from USDA 

Marena 

450 km 

350 km 

1 km 
1.6 km 

Burgin/Moghaddam 
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From land cover type to model 

 Available information & ancillary data is used 
to adapt model to specific landscape (via 
parameter input file) 

•   Current: selection of pre-determined input 
files based on land cover type 

•   Prospective: generate input file based on 
more diverse combinations of ancillary data 

Deciduous  tree 

Evergreen  tree 

Crop – soybean  

Grass/ Grassland 

Burgin/Moghaddam 
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From land cover type to model:  One model 

 Model is general enough to represent various land cover types 

tree 

rough soil surface soybean Water (lake, river, etc.) 

disk 

large cylinder 

middle cylinder 

needle 
small cylinder 

Burgin/Moghaddam 
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Model: 

3 km 

•   Can simulate multi-layer vegetation and multiple vegetation types 
simultaneously 

•   Builds on existing single species forest model (Durden et al., 1989) 
-   Scattering from layers of arbitrarily oriented dielectric cylinders above a rough 

dielectric surface  
-   Extended to multi-layer multi-species discrete scatterer model with rough surface 

representing ground 
-   Simulation of full Stokes matrix and polarization signature 

•   Analysis is based on wave theory; distorted Born approximation 
-   Scattering and transmission matrices are formed, from which Stokes matrices 

are calculated 

Burgin/Moghaddam 
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Model (2): 

3 km 

Species-specific parameters: 
•   Set of 27 parameters define geometry and structure of single 

species: 
•   Soft- or hardwood 
•   Dielectric characteristics of leaves, branches, trunks, soil 
•   Densities, lengths, radii 
•   Probability density function (pdf‘s) for orientation of branches, trunks 

•   Allometric relations exist for different species, ideally unique 
relationships 

•   Knowledge of plant anatomy results in species-specific relations for modeling 

Burgin/Moghaddam 
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Single species geometry: 

3 km 

DG CG DC TG 

    Trunk  

    layer 

Ground 

      crown 

        layer 

Model considers four scattering mechanisms:  
•   Direct backscatter from crown layer (DC) 
•   Direct backscattering from ground (DG) 
•   Specular crown scattering followed by ground reflection (CG) modified for 

surface roughness 
•   Specular trunk scattering followed by ground reflection (TG) 

Burgin/Moghaddam 
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Single species setup: 

3 km 

•   Total Stokes matrix found by summing the matrices of the 
different scattering mechanisms 

  M:   Stokes matrix for backscattering 
   T:   Stokes matrix for transmission through layer 
   b:   Branch layer 
    t:   Trunk layer 
   g:   Ground 

Burgin/Moghaddam 



30 

Multi-species geometry: 

3 km 

•   Introduction of more species will result in N layers 
•   Determination of layer composition, including that of overlapping layers 

is an important step 
•   Model proceeds with methodical calculation of layer scattering, 

attenuation and interaction 

    

    

ground 
layer N 

layer 1 

layer 2 

... 

DG LI TG DC CG 

Burgin/Moghaddam 
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Multi-species setup: 

3 km 

•   Total Stokes matrix for multi-species model: 

TL1, ...TLN: can contain combination of crown and trunk layer, depending on geometry 

M:    Stokes matrix for backscattering 
T:     Stokes matrix for transmission 

through layer 
b:     Branch layer 
t:      Trunk layer 
g:     Ground 

Burgin/Moghaddam 
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Architecture of Simulator 

Text files 

Text files FORTRAN 

Model 

Google Earth 

PCI Geomatics 

EASI 
Engineering Analysis and 

Scientific Interface 

backscatter cross section 
of each sub-block 

EASI Aggregation of 
sub-blocks 

(Verification with 
Matlab) 

Pre-determined 
parameter input 

files 

Burgin/Moghaddam 
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Canton Marena 

PCI Geomatics 

Soil layer NED layer 

Land cover layer 
Marena 

PCI Geomatics 

Land cover layer 

Soil layer 

PCI Geomatics 

Select area 
and read 

data out via 
text files 

PCI Geomatics 

PCI Geomatics 

Text files 

EASI Aggregation of 
sub-blocks 

Text files 

FORTRAN 
backscatter cross section 

of each sub-block 

(Verification with 
Matlab) 

Pre-determined 
parameter input 

files 

EASI 
Engineering Analysis and 

Scientific Interface 

Model 
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Pre-determined 
parameter input 

files 

Text files 

Text files FORTRAN 

PCI Geomatics 

backscatter cross section 
of each sub-block 

EASI Aggregation of 
sub-blocks 

(Verification with 
Matlab) 

EASI 
Engineering Analysis and 

Scientific Interface 

Model 
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Pre-determined 
parameter 
input file 

Input/Output 
text files 

Fortran 
model 

Run the Fortran 
model… 

FORTRAN 

Text files 

Text files 

PCI Geomatics 

backscatter cross section 
of each sub-block 

EASI Aggregation of 
sub-blocks 

(Verification with 
Matlab) 

Pre-determined 
parameter input 

files 

EASI 
Engineering Analysis and 

Scientific Interface 

Model 
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New data layer 
co-registered on 

Earth 

PCI Geomatics 

Pre-determined 
parameter input 

files 

Text files 

Text files FORTRAN 
backscatter cross section 

of each sub-block 

EASI Aggregation of 
sub-blocks 

(Verification with 
Matlab) 

EASI 
Engineering Analysis and 

Scientific Interface 

Model 
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Architecture, con’t. 

•   Backscatter cross section from each sub-block is calculated 
•   Aggregation types can be investigated: blocks of 4 (light green), 16 (dark green), 64, 

etc., to achieve a statistically representative mean value for the backscattering cross 
section of the scene (e.g., for one SMAP pixel) 

•   Final result can be exported to PCI & Google Earth for visualization 
•   Will be used in the future as basis for disaggregation analysis for SMAP retrievals 

Sub-block  
 30 x 30 m 

(Resolution of NLCD 2001  
land cover type 

information) 

~3 km SMAP resolution cell 

Burgin/Moghaddam 
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First results:      HH backscatter coefficient in dB for L-band 

Marena Canton 

1.  Google Earth 
2.  Land cover type from NLCD 2001 
3.  Backscatter coefficient 

a)   Block of 1 x 1 sub-blocks 
b)   Block of 2 x 2 sub-blocks 
c)   Block of 4 x 4 sub-blocks 
d)   Block containing all sub-blocks   

-30 dB 

-10 dB 

-20 dB 

-30 dB 

-10 dB 

-20 dB 

Burgin/Moghaddam 

•   The final aggregation stage is 
similar to what SMAP radar sees 

•   Landscape detail is lost 
•   Current aggregation simply 

shows linear averaging; in reality 
SMAP data might correspond to 
some other (nonuniform or 
nonlinear) aggregation 
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First results:      VV backscatter coefficient in dB for L-band 

Marena 

1.  Google Earth 
2.  Land cover type from NLCD 2001 
3.  Backscatter coefficient 

a)   Block of 1 x 1 sub-blocks 
b)   Block of 2 x 2 sub-blocks 
c)   Block of 4 x 4 sub-blocks 
d)   Block containing all sub-blocks 

Canton 

-30 dB 

-5 dB 

-17.5 dB 

-30 dB 

-5 dB 

-17.5 dB 

Burgin/Moghaddam 

•   VV results are similar to HH 
•   This aggregation simply shows 

linear averaging; in reality SMAP 
data might correspond to some 
other (nonuniform or nonlinear) 
aggregation 
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Ongoing Activities 

•   Improve modeling and finalize landscape simulator: 
•   Search for and integrate more available information 
•   Use more ancillary data to build input files of sub-blocks to make 

modeling as realistic as possible 
•   Integrate topography (slope, etc.)  

•   Investigate forward-mode multi-scale aggregation/disaggregation 
•   Can a coarse resolution measurement be represented as a weighted 

sum of the fine-resolution ones? What statistical rules apply? 
•   Study sensitivity of answer to above question to perturbations in soil 

moisture 

Burgin/Moghaddam 
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Wireless Comm and Actuation System Overview 

•   Developed and successfully tested “Ripple-1” wireless sensor nodes for 
field deployment at U of M Matthaei Botanical Gardens 

•   Started on the design of “Ripple-2” ground unit platform to provide better 
energy efficiency for router nodes 

•   Webpage released, with a backend database to store and retrieve real-
time soil moisture data collected at the Botanical Gardens 

Liu/Goykhman/Li 



42 

Functional view 
•   Soil moisture observations 

provided by sparse set of 
sensors in the field 

•   Each sensor sends data to 
coordinating center via a 
wireless network  

•   Base station assimilates 
data, generates control, 
and sends that to 
actuators at sensor 
locations 

Soil surface 

Liu/Goykhman/Li 

Base station/
coordinator 
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Field Deployment: Matthaei Botanical Gardens 

Goykhman/Li/Liu 

Thirty Ripple-1 sensor node were built and successfully deployed at Matthaei during 
our AIST-05 project. Figure shows the Zigbee network formed by these sensor nodes. 
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Ripple-1 ZigBee Network  

•   A multi-hop network consisting of three types of logic devices 

•   An end device is heavily duty cycled; the base station is 
plugged in; the router currently needs more power than desired 

•   Can remotely access sensors and control data collection 

•   Can remotely set the sensor and transceiver on cyclic sleep 
mode to better control energy consumption  

coordinator 
router 
end node 

Li/Liu 
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AIST-05: The Ripple-1 Node 

Li/Liu 

•   Xbee Pro SOC module serves as MCU and radio 
•   Long Communication Range: up to 1 mile (1600 m) 
•   Low Power Consumption 

  295mA @3.3 V (TX) 
  45 mA @3.3 V (RX) 
  < 10 uA (Sleep) 

     �
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Global architecture of the Ripple system 

•   In target field 
–   A sensor network consisting of multiple wireless ground units and sensors 
–   An indoor base station; data stored in a database 
–   Scheduling policy run on the base station 

•   On UM campus 
–   Web site hosted on a server (soilscape.eecs.umich.edu) 
–   Real-time data query and display 
–   Enable mobile access 

Li/Liu 
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Plans for Deploying at SMAP 2010 Field Sites 

•   SMAP has deployed a network of ground sensors in Marena, 
OK, this spring 

-  Primary goal is to benchmark various in-situ sensors 
against each other 

-  May also investigate issues related to scaling of soil 
moisture measurements, but limited scope 

•   We plan to deploy networks concurrently 

-  Marena, OK (interleaved with SMAP sensors) 
-  Canton, OK (our network only) 
-  Sites are within ~ 100 miles of each other, but Canton has 

more heterogeneity and allows better testing of optimal 
placement strategies 

Moghaddam 
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Summary �

•  Tested several candidate approaches for sensor placement 
optimization

–   Implemented and verified empirical placement strategies; started 

developing analytical joint placement/scheduling methodology


•  Built landscape simulator

–   Simulator architecture developed, implemented, and tested; 

preliminary scaling studies performed


•  Developed wireless sensor actuation and communication nodes

–   Multihop architecture investigated


•  Ongoing collaborations with SMAP algorithms and całval team

–   Continually collaborating with team; will install in one or two of SMAP 

całval nodes (one in Oklahoma, another TBD)

•  Various project elements at TRLs of 3 to 4



